Generation of sequence-based data for pedigree-segregating Mendelian or Complex traits
نویسندگان
چکیده
MOTIVATION There is great interest in analyzing next generation sequence data that has been generated for pedigrees. However, unlike for population-based data there are only a limited number of rare variant methods to analyze pedigree data. One limitation is the ability to evaluate type I and II errors for family-based methods, due to lack of software that can simulate realistic sequence data for pedigrees. SUMMARY We developed RarePedSim (Rare-variant Pedigree-based Simulator), a program to simulate region/gene-level genotype and phenotype data for complex and Mendelian traits for any given pedigree structure. Using a genetic model, sequence variant data can be generated either conditionally or unconditionally on pedigree members' qualitative or quantitative phenotypes. Additionally, qualitative or quantitative traits can be generated conditional on variant data. Sequence data can either be simulated using realistic population demographic models or obtained from sequence-based studies. Variant sites can be annotated with positions, allele frequencies and functionality. For rare variants, RarePedSim is the only program that can efficiently generate both genotypes and phenotypes, regardless of pedigree structure. Data generated by RarePedSim are in standard Linkage file (.ped) and Variant Call (.vcf) formats, ready to be used for a variety of purposes, including evaluation of type I error and power, for association methods including mixed models and linkage analysis methods. AVAILABILITY AND IMPLEMENTATION bioinformatics.org/simped/rare CONTACT [email protected].
منابع مشابه
Whole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient
Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a gener...
متن کاملGenetic structure of susceptibility traits for hip dysplasia and microsatellite informativeness of an outcrossed canine pedigree.
An outcrossed canine pedigree was developed for quantitative trait locus (QTL) mapping of hip dysplasia by breeding dysplastic Labrador retrievers to trait-free greyhounds. Measured susceptibility traits included age at onset of femoral capital chondroepiphyseal ossification (OSS), maximum hip distraction (laxity) index (DI), and the dorsolateral subluxation (DLS) score. The pedigrees consisted...
متن کاملGenetic analysis of agronomic and physiological traits of bread wheat (Triticum aestivum L.) using generation mean analysis under drought stress conditions and spring planting in the cold climate
Study of heritability and gene action to improve agronomic and physiological traits, especially under drought stress conditions, are very important. The objectives of this study were to investigate heritability for important agronomic traits and some physiological characters in a cross between two spring wheat cultivars. The experiment was carried out using different generations (BC1, BC2, F3, ...
متن کاملWhole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient
BACKGROUND Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. METHODS The proband showed a gener...
متن کاملNovel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk
The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mappin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 22 شماره
صفحات -
تاریخ انتشار 2015